Generative AI for Research & Development with AWS, Python

Generative AI for Research & Development with AWS, Python

Description:

In this course, you will learn how to build generative AI applications and chatbots using Bedrock, LLMs, LangChain, RAG, Python, Streamlit, and various foundation models, with a focus on their application in research and development for real-world projects.

Generative AI for Research & Development

Here are the key use cases and projects featured in the course:

  1. Text-to-Image Generation: Learn how to use AWS Lambda and Amazon AI models to generate images from text, with a full setup guide.

  2. Text-to-Image Generation with Stable Diffusion: Explore how to integrate Stable Diffusion models for generating images based on text input.

  3. Text Summarization: Understand how to use Cohere Command and Text Foundation Models for efficient text summarization.

  4. Python-Based Chatbot: Build a chatbot using AWS Bedrock and Anthropic Claude FM.

  5. Streamlit-Based Python Chatbot: Create a dynamic, Streamlit-powered Python chatbot with AWS Bedrock and Anthropic Claude.

  6. LangChain-Driven Chatbot: Build a LangChain-powered Streamlit chatbot using Python, AWS Bedrock, and Anthropic Claude.

  7. RAG for Health Chatbot: Implement Retrieval Augmented Generation (RAG) to develop a health-related chatbot.

  8. Project: Text2Speech Player - A hands-on project where students will develop a Text-to-Speech (TTS) player using Python libraries like gTTS, os, and pygame.

Section 1: Introduction to AI, ML

  • Course Overview at a Glance

  • Introduction to AI

  • Real-World Applications of AI

  • Machine Learning Overview

  • Machine Learning Applications

  • AI and ML: Understanding Their Relationship

  • Types of Machine Learning: Supervised Learning

  • Unsupervised ML

  • Reinforcement ML

Section 2: Foundations of Deep Learning

  • Introduction to Deep Learning

  • Deep Leaning, AI and ML

  • Neural Network

Section 3: Generative AI and Its Applications

  • Introduction to Generative AI

  • Real-World Application of Generative AI

  • Benefits of Generative AI

  • Relationship Between AI, ML, DL and Generative AI

Section 4: Foundation Models, LLMs, Text-to-Image, and Multimodal AI

  • Introduction to Foundation Models

  • LLM, Text-to-Image Models

  • Multimodal Models

Section 5: Amazon Bedrock and Foundation Models: An In-Depth Exploration

  • Introduction to Amazon Bedrock

  • How Amazon Bedrock Works?

  • Foundation Models in Amazon Bedrock

  • Various Foundation Models via Amazon Bedrock

Section 6: Exploring Amazon Bedrock Console and Features

  • Amazon Bedrock Console

  • Playgrounds Feature in Amazon Bedrock

  • Builder Tools Features in Amazon Bedrock

  • Safeguard Feature in Amazon Bedrock

  • Model Access in Amazon Bedrock

Section 7: Inference Parameters of Foundation Models

  • Randomness and Diversity

  • Temperature, Top P, Top K & More

  • Length Control: Response Length, Stop Sequence, & Length Penalty

Section 8: Gen AI Use Case 1: Text-to-Image Generation with Lambda and Amazon Model

  • Project Overview

  • Login to AWS and Access Bedrock Service

  • Create S3 Bucket and Lambda Function

  • Configure and Assign Permissions to a Lambda Function

  • Begin Coding the Lambda Function: Import json and boto3

  • Send Text Input to Lambda Function

  • Verify the Boto3 Version

  • Invoke the Bedrock Model (Titan Image Generator G1)

  • Inference Parameters

  • Image Generation Configuration

  • Required parameters to invoke the model

  • Print the Model's Response

  • Arrange Model Response using ChatGPT

  • Extract the Desired Key-Value from the Model's Response

  • Extract the Image data using Cloud Watch Logs

  • Set the S3 Bucket and Object Key

  • Upload the Image to S3 Bucket

  • Check the Generated Image in S3 Bucket

  • Configure Proper Permissions for S3 Bucket

  • Generate a Presigned URL for Image Access

  • Verify and Access Image via Presigned URL

  • Return Statement

  • Introduction to API Gateway

  • Create REST API

  • Pass Query Parameters via API Gateway

  • Create Mapping Template Body in API Gateway

  • Final Test through API Gateway

Section 9: Gen AI Use Case 2: Text-to-Image Generation with Lambda and Stable Diffusion

  • Use Case Overview

  • Expected Outcome Before Getting Started

  • Create a Lambda Function and S3 Bucket

  • Configure and Assign Permissions to a Lambda Function

  • Begin Coding the Lambda Function: Import json and boto3

  • Lambda Connection to Bedrock and S3 via Code

  • Create a Function to Send Input Text to Lambda

  • Verify Stable Diffusion Model Access by Anthropic

  • Invoke the Bedrock Model (Stable Diffusion)

  • Supplying Model Inference Parameters

  • Print Bedrock Model Response for the Prompt

  • Convert Model Response from JSON to Python Dictionary

  • Print the response of the Model

  • Extract the Desired Key-Value from the Model's Response

  • Extract the Image data using Cloud Watch Logs

  • Define the Bucket and Object Key Name

  • Upload the Image to S3 Bucket

  • Download and Check Image from S3

  • Generate a Presigned URL for Image Access

  • Re-run Lambda to Generate Image URL

  • Return Statement

  • Introduction to API Gateway

  • Create REST API

  • Provide URL Query String Parameters via API Gateway

  • Create Template Body in API Gateway Mapping Templates

  • Final Testing via API Gateway

Section 10: GenAI Use Case 3: Text Summarization Generation Using Cohere Command-Text FM

  • Use Case Overview

  • Expected Outcome Before Getting Started

  • Create and Assign Permissions to a Lambda Function

  • Lambda Function: Importing json and boto3

  • Create a Function to Handle Text Input for Summarization

  • Run the Lambda Function to View the Response

  • Invoke the Model for Text Summarization - Cohere Command

  • Supplying Model Inference Parameters

  • Run the Lambda Function to View the Response

  • Convert the Response into a Python Dictionary

  • Extract the Value of the "text" Key

  • Return the Model Response

  • Create an API Gateway

  • Set URL Query Parameters and Create Mapping Template in API Gateway

  • Final Testing via API Gateway

Section 11: Project - Text2Speech Player

  • Introduction to the Text2Speech Project

  • Import Python Libraries: gTTS, os, pygame, time

  • Function for Text-to-Speech Conversation

  • Save the speech as an audio file

  • Initialize pygame mixer for audio playback

  • Wait for the audio to finish playing

  • Delete the audio file after playback

  • Call the function

  • Run and debug the text-to-speech player code

Section 12: Gen AI Use Case 4: Building a Python-Based Chatbot with AWS Bedrock and Anthropic Claude FM

  • Overview of the Chatbot Project

  • Installing and Setting Up VS Code

  • Create IAM User for Bedrock Access

  • Authorize VS Code Access to AWS via AWS CLI

  • Getting Started with Python: Importing JSON and Boto3

  • Define a Function to Set Up the Bedrock Client

  • Define a Function to Invoke the Bedrock Model

  • Passing Parameters to Invoke the Model

  • Defining Model Inference Parameters

  • Defining Body Parameters

  • Call Functions with Arguments in Python

  • Manually Get User Input and Invoke the Bedrock Model

  • Display the Model's Response

  • Response from the Anthropic Model

  • Troubleshoot and Run Python Code for Chatbot

  • Run the chatbot in a loop

Section 13: GenAI Use Case 5: Streamlit-Based Python Chatbot with AWS Bedrock and Anthropic Claude

  • Overview of the Chatbot Project

  • Introduction to Streamlit for Building a Basic LLM Chat App

  • Python Code to Invoke the Bedrock Model

  • Streamlit Python Code for Building a Frontend

  • Streamlit Python Code - Initialize Chat History

  • Streamlit Code: Add Button for User Input

  • Streamlit Code: Clear Chat History

  • Run the Streamlit Python Chatbot

Section 14: GenAI Use Case 6: LangChain-Driven Streamlit Chatbot Using Python, AWS Bedrock, Anthropic Claude

  • Overview of LangChain Feature

  • Chatbot Demo and Architecture Explained

  • Importing Classes from the LangChain Library

  • Install VS Code and Start Coding in Python

  • Initialize FM Parameters with ChatBedrock

  • Set Model ID and Parameters

  • Initialize Conversation Memory - ConversationSummaryBufferMemory

  • Function to Manage Chatbot Conversation - ConversationChain

  • Streamlit Python Code for Building a Frontend

  • Troubleshooting

  • Run Chatbot and Verify LangChain Features

Section 15: GenAI Use Case7: Retrieval Augmented Generation (RAG) - Build a Health Chatbot

  • Expected Outcome Before Getting Started

  • Project Overview

  • Prerequisites - Required Installation and Setup

  • Importing all necessary Python libraries

  • Load Internal Data Source with PyPDFLoader

  • Split the data using RecursiveCharacterTextSplitter

  • Establish AWS Access in VS Code Using AWS CLI

  • Create Text Embeddings

  • Create a function

  • Create a function to connect with Claude FM

  • Create a function to search Vector DB for the best match

  • Streamlit Code for Frontend Development

  • Verify Python Health Department QA Chatbot

Section 16: Introduction to Python Language

  • Introduction

  • An overview of Python

  • About Shell Scripting

  • Python vs. Shell Scripting

  • When to Use Python vs. Shell Scripting

Section 17: How to Begin Practicing Python Coding

  • Begin Python Coding Practice

  • Visual Studio Code - Python Coding Practice

  • PyCharm - IDEs

  • Codespaces - Online Coding Platform

Section 18:  Python Data Types

  • About Data Types in Python

  • Lab - String Data Type

  • Lab - Integer Data Type

  • Lab - Float Data Type

  • Lab - len(), Length of a string

  • Lab - String upper(), lower()

  • Lab - String replace()

  • Lab - String split()

  • Lab - Print specific object in split()

  • About List in Python

  • Lab - List Data Type

  • Lab - Add and Modify in a List Data Type (Mutable)

  • About Tuples in Python

  • Lab - Tuples in Python

  • About Sets in Python

  • Lab - Sets in Python

  • Dictionary in Python

  • Lab - Dictionary in Python

  • Boolean Data Types

  • Lab - Boolean in Python

Section 19: Regular Expression (regex) in Python

  • Overview of Regular Expressions in Python

  • Lab - Using re. match() to Match Patterns at the Start of a String

  • Lab - Using re. search() to Find Matches Anywhere in a String

  • Lab - Using re. findall() to Search for All Matches in a String

  • Regex Use Cases from a DevOps Perspective

  • Coding Exercise

Section 20: Mastering Keywords in Python

  • Overview of Keywords in Python

  • Common Python keywords

  • Mastering Control Flow Keywords - if, else, for, and break

  • Lab: Mastering Control Flow Keywords - continue, def, return, class, import etc.

Section 21: Working with Variables in Python

  • Overview of Variables with Example

  • Lab: Working with Float Variables in Python

  • Lab: Defining Lists as Variables in Python

  • Lab: Working with Dictionary Variables in Python

Section 22: Return Statement in Python

  • Return Statement: An Overview with Syntax

  • Lab: Creating Functions That Return Values

  • Lab: Functions That Return Multiple Values

  • Lab: Function for Identifying Even and Odd Values

Section 23: Python Functions: Definition and Usage

  • Introduction to Functions in Python

  • Advantages of functions in Python

  • Lab: Functions with Parameters

  • Lab: Functions with Return Value

  • Lab: Designing Functions for Basic Arithmetic Operation-> Comparing Scripts: Using Functions vs. Not Using Functions

Section 24: Utilizing Modules in Function Design

  • Introduction to Python Modules

  • An Overview of Built-in Modules

  • An Overview of User-defined Modules

  • Lab: Essential Built-in Modules in Python

  • Lab: OS and Math Modules

  • Lab: Building Your Own Modules

  • Last Lecture

Course Fee

$44.99

Discounted Fee

$10.00

Hours

12

Views

566